UNO STUDIO DI FUNZIONE CON DERIVE

a cura del prof. Guida

Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0 .

Consideriamo la funzione

$$y = \frac{x^2}{4 - x^2}$$

In Derive proviamo a fare lo studio al contrario rispetto al classico studio di funzione. Partiamo cioè dal grafico e poi studiamo i parametri caratteristici di esso, come massimi, minimi, flessi e asintoti. Cominciamo con il disegnare la funzione. Digitiamo la funzione nel riquadro in basso in questo modo

$$f(x):=x^2/(4-x^2)$$

e premiamo Invio. Otteniamo il seguente risultato nella finestra algebrica:

#1:
$$f(x) := \frac{x^2}{4 - x^2}$$

Dopo aver selezionato la nostra funzione (<u>evidenziandola in blu</u>), tracceremo il grafico cliccando sul pulsante . Dovrebbe apparire la seguente finestra grafica con il piano cartesiano

Dobbiamo adesso interpretare il grafico. Procediamo allo studio "classico" di funzione seguendo questo schema:

- 1) DOMINIO (Campo di esistenza)
- 2) INTERSEZIONE CON GLI ASSI
- 3) SIMMETRIE (Funzione pari/dispari/né pari né dispari)
- 4) SEGNO DELLA FUNZIONE (Positività/negatività della funzione)
- 5) ASINTOTI (Verticali/orizzontali/obliqui)
- 6) MONOTONIA (crescenza/decrescenza)
- 7) MASSIMI, MINIMI e FLESSI ORIZZONTALI
- 8) CONCAVITA' E FLESSI OBLIQUI

Partiamo dal punto 1), cioè il dominio. Il Derive non ce lo può dire direttamente e quindi dovremo ragionare un attimo. Per quanto riguarda la nostra funzione, che è fratta, il problema è quello di

rendere il denominatore diverso da zero. Quindi, ritornando alla finestra algebrica con il tasto 3 scriviamo nell'apposito spazio della barra inferiore: $4-x^2 \neq 0$ e premiamo Invio. Otterremmo la seguente

2 #2: 4 − x ≠ 0

Adesso risolviamola. Clicchiamo sul pulsante (Risolvi espressione) e otteniamo come risultato

Risolvi espressione #2	2				
Rispetto a	Metodo	Dominio soluzione Complesso Reale C Intervallo	Estremi della soluzione Superiore: 10 Inferiore: -10		
OK Risolvi Annulla					

Clicchiamo sul tasto Risolvi per ottenere:

#3: SOLVE
$$(4 - x^{2} \neq 0, x)$$

#4: $x \neq -2 \land x \neq 2$
Dunque $4 - x^{2}$ è diverso da 0 per $x \neq -2$ e $x \neq 2$. Abbiamo dunque stabilito il **dominio**.

Passiamo al punto 2), cioè l'intersezione con gli assi. Per ottenere l'intersezione con l'asse x delle ascisse basta impostare un sistema di due equazioni cliccando su "Risolvi" nella barra dei menù e poi "....Sistema", scrivendo negli appositi spazi rispettivamente y=f(x) e y=0. Otteniamo così:

Pertanto il punto (0;0), cioè l'origine degli assi, è l'intersezione cercata. Ragioniamo similmente per l'intersezione con l'asse delle ordinate avendo cura, però, d'impostare nel solito sistema la seconda equazione scrivendo x=0. Otteniamo così:

#7:
$$SOLVE([y = f(x), x = 0], [x, y])$$

#8:

#Q ·

F(v)

 $[x = 0 \land y = 0]$

Pertanto il punto (0;0) cioè l'origine degli assi è l'intersezione cercata.

E' solo un caso che le due intersezioni coincidano Quindi la funzione passa per l'origine degli assi, come si vede anche dal grafico.

Passiamo al punto 3), cioè simmetrie. Scriviamo f(-x) nel solito spazio, premiamo invio e otteniamo:

#10:
$$\frac{2}{x}$$

#10: $\frac{2}{4-x}$

Per cui la **funzione è pari** essendo f(-x)=f(x), cioè simmetrica rispetto l'asse y.

Adesso passiamo al punto 4), cioè la positività e la negatività della f(x). Per sapere per quali valori di x la funzione è positiva imponiamo f(x) > 0. Scriviamo tale disequazione nel solito spazio e premiamo invio. Accertiamoci sempre che ciò che vogliamo fare calcolare a Derive sia selezionato

(cioè evidenziato in blu) e clicchiamo sul pulsante

#11:
$$f(x) > 0$$
#12:SOLVE($f(x) > 0, x$)#13: $x \neq 0 \land -2 < x < 2$ Pertanto la $f(x)$ è positiva per x diverso da zero ed x compreso tra -2 e 2Ragioniamo similmente per la negatività della funzione scrivendo $f(x)<0$. Otteniamo:#14: $f(x) < 0$ #15:SOLVE($f(x) < 0, x$)#16: $x < -2 \lor x > 2$

cioè la f(x) è negativa per valori di x minori di -2 e maggiori di 2.

E' consigliabile porre attenzione al grafico man mano che si acquisiscono le varie informazioni in modo da avere un riscontro diretto, oppure ricorrere al cartaceo: pertanto cominceremo a disegnare su un foglio il piano cartesiano tracciando le aree in cui la funzione è positiva e quelle in cui è negativa.

Passiamo al punto 5). Calcoliamo gli asintoti. Cominciamo con quelli **orizzontali**, cioè <u>calcolando</u> <u>i limiti per x che tende a $+\infty$ e $-\infty$ </u>. Per fare questo digitiamo f(x) nel riquadro in basso e premiamo Invio. Adesso clicchiamo il pulsante lim. Comparirà la seguente maschera:

Calcola limite #16	\mathbf{X}
Variabile: 🛛 💌 Punto limite: 🛛	Limite da O Sinistra O Destra O Destra e sinistra
OK Semplifica Annulla]

Scriviamo inf nella cella Punto limite controllando che sia da Destra e sinistra, poi clicchiamo su Semplifica. Otterremmo il seguente:

```
#17: f(x)
    lim f(x)
#18: x→∞
#19:
```

-1

Pertanto abbiamo un asintoto orizzontale di equazione y=-1

Passiamo agli **asintoti verticali**. Ricordiamo che gli asintoti verticali possono esserci solo per x = -2 e x = 2. Passiamo a calcolare il limite destro e sinistro in questi punti. Ripetiamo la procedura sopra descritta scrivendo di volta in volta nello spazio Punto limite -2 e 2 con limite rispettivamente da sinistra e da destra per ciascuno. Otterremo i seguenti risultati:

Pertanto i	punti	x=-2 e x=2 sono asintoti verticali in quant	to il $\lim_{x \to 2} f(x) = \pm \infty$
#27:			-∞
#26 :	lim x→2+	f(x)	
#25 :			ŵ
#24:	lim x→2-	f(x)	
#23:			ω
#22:	lim x→2	f(x) +	
#21:			-∞
#20:	lim x→2	- f(x)	

Dato che ci sono asintoti orizzontali NON ci sono asintoti obliqui.

Passiamo al punto 6). La vera potenza di Derive si vedrà proprio adesso!!. Digitiamo la nostra solita funzione f(x) e premiamo invio

Calcoliamo la derivata prima attraverso il tasto Calcola derivata, cioè ^a. Otteniamo come risultato, impostando l'ordine a 1:

#28: f(x)#29: $\frac{d}{dx} f(x)$

#30: (x - 4)

Indichiamo con g(x) la nostra funzione derivata. A tal fine facciamo un copia-incolla del risultato ottenuto #30: avendo cura di scrivere davanti a tale espressione g(x):= e poi premiamo Invio. Si otterrà:

#31: $g(x) := \frac{8 \cdot x}{\begin{pmatrix} 2 & 2 \\ (x & -4) \end{pmatrix}}$

Adesso per studiare la crescenza e la decrescenza della funzione si può procedere come si è fatto prima per studiare la positività e negatività della funzione, questa volta con g(x) al posto di f(x). Si otterranno i seguenti risultati:

#32:	g(x) > 0	
#33:	SOLVE(g(x) > 0, x)	
#34:		x > 0
#35:	g(x) < 0	
#36:	SOLVE(g(x) < 0, x)	
#37:		x < 0

Per cui la nostra funzione cresce per valori di x>0 e decresce per quelli di x<0 (vedi grafico)

Adesso andiamo a studiare i massimi e i minimi. Poniamo g(x) = 0. Con il pulsante 'Risolvi espressione' e, impostando il metodo numerico, otteniamo:

#38:
$$g(x) = 0$$

#39: NSOLVE($g(x) = 0, x$)
#40: $x = 0$

Per vedere se il punto x=0 in cui si annulla la derivata è di massimo, di minimo o di flesso orizzontale basterà, al momento, guardare il grafico. Nel nostro caso si tratta di **punto di minimo.** Pertanto NON ci sono flessi orizzontali.

Adesso andiamo a calcolare i flessi obliqui e gli intervalli di concavità, cioè il punto 7). Scriviamo f(x) e calcoliamo la derivata di ordine 2. Otteniamo:

#41:
$$f(x)$$

#42: $\left(\frac{d}{dx}\right)^2 f(x)$
#43: $\frac{8 \cdot (3 \cdot x^2 + 4)}{(4 - x^2)^2}$

Per calcolare i flessi obliqui e gli intervalli di concavità ragioniamo come prima. (cioè chiamiamo la derivata seconda di f(x) con il nome di h(x). Pertanto copiamo ed incolliamo il risultato ottenuto #43: avendo cura di scrivere davanti a tale espressione h(x):= e poi premiamo Invio. Si otterrà:

#44: h(x) :=
$$\frac{8 \cdot (3 \cdot x^{2} + 4)}{(4 - x^{2})^{2}}$$

Ponendo h(x)>0 e poi h(x)<0 si ottengono i seguenti risultati:

```
#45:
      h(x) > 0
#46:
      SOLVE(h(x) > 0, x, Real)
#47:
                                                              -2 < x < 2
#48:
      h(x) < 0
#49:
      SOLVE(h(x) < 0, x, Real)
#50:
                                                            x < -2 \lor x > 2
```

Notiamo che Derive ci dice che c'è una concavità rivolta verso l'alto per valori di x compresi tra -2 e 2 mentre la concavità sarà rivolta verso il basso per x<-2 e x>2. I punti x=-2 e x=-2 come abbiamo visto sono degli asintoti verticali. In tali punti dunque la funzione NON esiste. Pertanto NON vi sono flessi. _____

Avendo determinato anche la derivata seconda, possiamo diversamente stabilire che x=0 è un punto di minimo: basterà calcolare g(0) e h(0) per ottenere.

#51 :	g(0)	
#52:		0
#53:	h(0)	
#54:		1
		2
Essendo minimo	o tale derivata prima uguale a zero e quella seconda <u>maggiore di zero</u>	, x=0 è un punto di

Questo conclude il nostro esempio.