SUCCESSIONI

DEFINIZIONE SUCCESSIONE NUMERICA

Una successione numerica è una funzione che ha per dominio l'insieme dei numeri naturali $\mathbb{N} = \{0;1;2;3;...\}$ o un suo sottoinsieme e come codominio \mathbb{R} , o un suo sottoinsieme. I valori che assume tale funzione si chiamano *elementi* o *termini* della successione e vengono indicati, ad esempio, con:

$$a_0, a_1, a_2, ..., a_n, ...$$

Gli elementi di una successione possono essere individuati applicando la formula che definisce il termine generale a_n , ad esempio $a_n = \frac{n}{n^2+1}$, oppure attraverso una definizione ricorsiva, ad esempio

$$\begin{cases} a_1 = 2 \\ a_{n+1} = \frac{a_n}{n-1} \end{cases}$$

DEFINIZIONE CARATTERE DI UNA SUCCESSIONE NUMERICA

Quando si fa tendere *n* all'infinito, si possono verificare tre situazioni diverse:

- il termine a_n tende a un valore finito ℓ e si dice che la successione ha carattere *convergente*;
- a_n tende a infinito e la successione si dice *divergente*;
- negli altri casi la successione si dice indeterminata.

DEFINIZIONE LIMITE DI UNA SUCCESSIONE NUMERICA

Si dice che la successione a_n converge al limite ℓ quando $\lim_{n \to \infty} a_n = \ell$; la successione diverge quando

 $\lim_{n \to \infty} a_n = \infty$; il carattere della successione è indeterminato quando $\lim_{n \to \infty} a_n$ non esiste.

SUCCESSIONI CON IL FOGLIO ELETTRONICO

Utilizzando il foglio elettronico è possibile calcolare molti elementi di una successione e dalla loro analisi si possono formulare ipotesi circa il carattere della successione stessa. In realtà, per determinare con certezza il carattere della successione, occorre procedere nella ricerca del limite $\lim a_n$.

Successione definita mediante il suo termine generale

Gli elementi delle successioni definite da una funzione si calcolano inserendo in una colonna una successione di valori di *n* e nella colonna adiacente la formula analitica della funzione. Consideriamo, come esempio, la successione definita dal suo temine generale:

$$a_n = \frac{2n-1}{n+1}$$

Prepariamo un foglio elettronico come indica la Figura 1:

	А	В	С	D
1				
2		n	an	
3		1	0,5	
4		2	1	
5		3	1,25	
6		4	1,4	
7		5	1,5	
8		6	1,571428571	
9		7	1,625	
10		8	1,666666667	
11		9	1,7	
40		10	<u>1. 79797</u> 9727	

Figura 1

Inseriamo i numeri da 1 a 20 nella colonna B3:B22, scriviamo la formula C3: =(2*B3-1)/(B3+1)

e copiamola nella colonna C3:C22.

La colonna B contiene i valori della variabile indipendente *n*, la colonna C contiene i valori della funzione. Formattiamo la colonna C in modo che in ogni cella risultino visibili 5 cifre significative (Figura 2).

	Α	В	С	D	
1					
2		n	an		
3		1	0,50000		
4		2	1,00000		
5		3	1,25000		
6		4	1,40000		
7		5	1,50000		
8		6	1,57143		
9		7	1,62500		
10		8	1,66667		
11		9	1,70000		
4124 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					

Figura 2

Per renderci conto delle caratteristiche di questa successione è interessante costruirne il grafico. Selezioniamo B2:C22 e inseriamo un *Grafico a dispersione* (Figura 3).

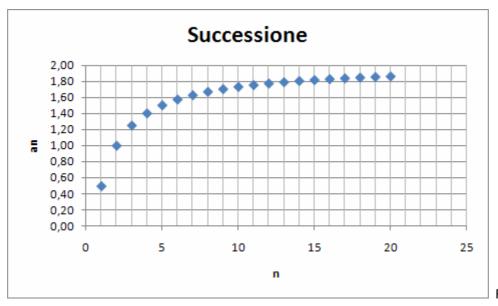


Figura 3

Osservando il grafico si nota che:

- 1. È formato da un insieme discreto di punti.
- 2. I punti sono distribuiti in modo particolare, che ci lascia intuire il carattere convergente della successione. Infatti i valori di a_n , al crescere di n, sembrano avvicinarsi sempre più a un valore limite.

Cerchiamo conferma di questa intuizione calcolando i valori di a_n quando n è grande. Possiamo riutilizzare la colonna B inserendo in B3:B22 i valori da 10, incrementati di 10 in 10, fino a 200 (Figura 4).

	Α	В	С	D
1				
2		n	an	
3		10	1,72727	
4		20	1,85714	
5		30	1,90323	
6		40	1,92683	
7		50	1,94118	
8		60	1,95082	
9		70	1,95775	
10		80	1,96296	
11		90	1,96703	
12		100	1,97030	
13		110	1,97297	
14		120	1,97521	
15		130	1,97710	
16		140	1,97872	
17		150	1,98013	
18		160	1,98137	
19		170	1,98246	
20		180	1,98343	
21		190	1,98429	
22		200	1,98507	

Figura 4

I valori di a_n sembrano avvicinarsi sempre più al valore 2 e il grafico aggiornato rende ancora più evidente il carattere convergente di questa successione (Figura 5).

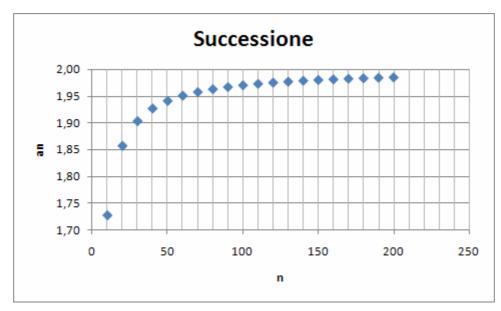


Figura 5

Successione definita mediante formula di ricorrenza

Proviamo a esprimere la successione precedente in forma ricorsiva.

Poiché il termine generale è $a_n = \frac{2n-1}{n+1}$, allora $a_1 = \frac{1}{2}$. Il termine successivo è $a_{n+1} = \frac{2(n+1)-1}{(n+1)+1}$.

Ponendo m = n + 1 si ricava n = m - 1 e si può scrivere:

$$a_n = \frac{2(m-1)-1}{m}$$
; $a_m = \frac{2m-1}{m+1}$.

Calcoliamo la differenza tra un elemento e il suo precedente:

$$a_m - a_n = \frac{2m-1}{m+1} - \frac{2(m-1)-1}{m} = \frac{2m^2 - m - 2(m^2 - 1) + m + 1}{m(m+1)} = \frac{3}{m(m+1)}$$

Quindi si ricava:

$$a_m = a_n + \frac{3}{m(m+1)}$$

da cui segue:

$$a_{n+1} = a_n + \frac{3}{(n+1)(n+2)}$$

Per calcolare i termini della successione con il foglio elettronico, ci è comodo considerare la successione

nella forma: $\begin{cases} a_1 = \frac{1}{2} \\ a_m = a_n + \frac{3}{m(m+1)} \end{cases}$

Digitiamo le formule:

C3: =0,5

C4: =C3+3/(B4*(B4+1))

e copiamo la cella C3 fino a C22. Come si può notare (Figura 6), la colonna C contiene gli stessi elementi della successione calcolati applicando la formula del termine generale (Figura 2).

	А	В		С	D
1					
2		n		an	
3			1	0,5	
4			- 2	1,00000	
5			3	1,25000	
6			4	1,40000	
7			5	1,50000	
8			6	1,57143	
9			7	1,62500	
10				C2+2//D4*	(D4+4))
11		-	=(C3+3/(B4*	(B4+1))
12			10	1,72727	
13.4.75000					

Figura 6

Attività

Calcola alcuni elementi delle seguenti successioni, costruiscine il grafico e cerca di stabilirne il carattere.

$$1. \quad a_n = \frac{n+1}{n+5}$$

2.
$$b_n = \frac{1}{n^2 - 2}$$

3.
$$c_n = \frac{(n+1)(n+4)}{1-n^2}$$

4.
$$\begin{cases} d_1 = 1 \\ d_n = \frac{2 \cdot d_{n-1} - 2}{n+2} \end{cases}$$

$$5. \quad e_n = \left(1 + \frac{1}{n}\right)^n$$